Back to Search Start Over

Deep-Learning-Based Land Cover Mapping in Franciacorta Wine Growing Area.

Authors :
Tariku, Girma
Ghiglieno, Isabella
Sanchez Morchio, Andres
Facciano, Luca
Birolleau, Celine
Simonetto, Anna
Serina, Ivan
Gilioli, Gianni
Source :
Applied Sciences (2076-3417); Jan2025, Vol. 15 Issue 2, p871, 21p
Publication Year :
2025

Abstract

Land cover mapping is essential to understanding global land-use patterns and studying biodiversity composition and the functioning of eco-systems. The introduction of remote sensing technologies and artificial intelligence models made it possible to base land cover mapping on satellite imagery in order to monitor changes, assess ecosystem health, support conservation efforts, and reduce monitoring time. However, significant challenges remain in managing large, complex satellite imagery datasets, acquiring specialized datasets due to high costs and labor intensity, including a lack of comparative studies for the selection of optimal deep learning models. No less important is the scarcity of aerial datasets specifically tailored for agricultural areas. This study addresses these gaps by presenting a methodology for semantic segmentation of land covers in agricultural areas using satellite images and deep learning models with pre-trained backbones. We introduce an efficient methodology for preparing semantic segmentation datasets and contribute the "Land Cover Aerial Imagery" (LICAI) dataset for semantic segmentation. The study focuses on the Franciacorta area, Lombardy Region, leveraging the rich diversity of the dataset to effectively train and evaluate the models. We conducted a comparative study, using cutting-edge deep-learning-based segmentation models (U-Net, SegNet, DeepLabV3) with various pre-trained backbones (ResNet, Inception, DenseNet, EfficientNet) on our dataset acquired from Google Earth Pro. Through meticulous data acquisition, preprocessing, model selection, and evaluation, we demonstrate the effectiveness of these techniques in accurately identifying land cover classes. Integrating pre-trained feature extraction networks significantly improves performance across various metrics. Additionally, addressing challenges such as data availability, computational resources, and model interpretability is essential for advancing the field of remote sensing, in support of biodiversity conservation and the provision of ecosystem services and sustainable agriculture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
15
Issue :
2
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
182434404
Full Text :
https://doi.org/10.3390/app15020871