Back to Search
Start Over
Classification of female MDD patients with and without suicidal ideation using resting-state functional magnetic resonance imaging and machine learning.
- Source :
- Frontiers in Human Neuroscience; 2025, p1-18, 18p
- Publication Year :
- 2025
-
Abstract
- Spontaneous blood oxygen level-dependent signals can be indirectly recorded in different brain regions with functional magnetic resonance imaging. In this study resting-state functional magnetic resonance imaging was used to measure the differences in connectivity and activation seen in major depressive disorder (MDD) patients with and without suicidal ideation and the control group. For our investigation, a brain atlas containing 116 regions of interest was used. We also used four voxel-based connectivity models, including degree centrality, the fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity, and voxel-mirrored Homotopic Connectivity. Feature selection was conducted using a sequential backward floating selection approach along with a Random Forest Classifier and Elastic Net. While all four models yield significant results, fALFF demonstrated higher accuracy rates in classifying the three groups. Further analysis revealed three features that demonstrated statistically significant differences between these three, resulting in a 90.00% accuracy rate. Prominent features identified from our analysis, with suicide ideation as the key variable, included the Superior frontal gyrus (dorsolateral and orbital parts), the median cingulate, and the paracingulate gyri. These areas are associated with the Central Executive Control Network (ECN), the Default Mode Network, and the ECN, respectively. Comparing the results of MDD patients with suicidal ideation to those without suicidal ideations suggests dysfunctions in decision-making ability, in MDD females suffering from suicidal tendencies. This may be related to a lack of inhibition or emotion regulation capability, which contributes to suicidal ideations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16625161
- Database :
- Complementary Index
- Journal :
- Frontiers in Human Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 182364051
- Full Text :
- https://doi.org/10.3389/fnhum.2024.1427532