Back to Search Start Over

Application of MRI image segmentation algorithm for brain tumors based on improved YOLO.

Authors :
Yang, Tao
Lu, Xueqi
Yang, Lanlan
Yang, Miyang
Chen, Jinghui
Zhao, Hongjia
Source :
Frontiers in Neuroscience; 2025, p1-15, 15p
Publication Year :
2025

Abstract

Objective: To assist in the rapid clinical identification of brain tumor types while achieving segmentation detection, this study investigates the feasibility of applying the deep learning YOLOv5s algorithm model to the segmentation of brain tumor magnetic resonance images and optimizes and upgrades it on this basis. Methods: The research institute utilized two public datasets of meningioma and glioma magnetic resonance imaging from Kaggle. Dataset 1 contains a total of 3,223 images, and Dataset 2 contains 216 images. From Dataset 1, we randomly selected 3,000 images and used the Labelimg tool to annotate the cancerous regions within the images. These images were then divided into training and validation sets in a 7:3 ratio. The remaining 223 images, along with Dataset 2, were ultimately used as the internal test set and external test set, respectively, to evaluate the model's segmentation effect. A series of optimizations were made to the original YOLOv5 algorithm, introducing the Atrous Spatial Pyramid Pooling (ASPP), Convolutional Block Attention Module (CBAM), Coordinate Attention (CA) for structural improvement, resulting in several optimized versions, namely YOLOv5s-ASPP, YOLOv5s-CBAM, YOLOv5s-CA, YOLOv5s-ASPP-CBAM, and YOLOv5s-ASPP-CA. The training and validation sets were input into the original YOLOv5s model, five optimized models, and the YOLOv8s model for 100 rounds of iterative training. The best weight file of the model with the best evaluation index in the six trained models was used for the final test of the test set. Results: After iterative training, the seven models can segment and recognize brain tumor magnetic resonance images. Their precision rates on the validation set are 92.5, 93.5, 91.2, 91.8, 89.6, 90.8, and 93.1%, respectively. The corresponding recall rates are 84, 85.3, 85.4, 84.7, 87.3, 85.4, and 91.9%. The best weight file of the model with the best evaluation index among the six trained models was tested on the test set, and the improved model significantly enhanced the image segmentation ability compared to the original model. Conclusion: Compared with the original YOLOv5s model, among the five improved models, the improved YOLOv5s-ASPP model significantly enhanced the segmentation ability of brain tumor magnetic resonance images, which is helpful in assisting clinical diagnosis and treatment planning. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16624548
Database :
Complementary Index
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
182346203
Full Text :
https://doi.org/10.3389/fnins.2024.1510175