Back to Search Start Over

Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition.

Authors :
Liu, Jiyao
He, Lang
Chen, Haifeng
Jiang, Dongmei
Source :
Frontiers in Neurorobotics; 2025, p1-15, 15p
Publication Year :
2025

Abstract

Significant strides have been made in emotion recognition from Electroencephalography (EEG) signals. However, effectively modeling the diverse spatial, spectral, and temporal features of multi-channel brain signals remains a challenge. This paper proposes a novel framework, the Directional Spatial and Spectral Attention Network (DSSA Net), which enhances emotion recognition accuracy by capturing critical spatial-spectral-temporal features from EEG signals. The framework consists of three modules: Positional Attention (PA), Spectral Attention (SA), and Temporal Attention (TA). The PA module includes Vertical Attention (VA) and Horizontal Attention (HA) branches, designed to detect active brain regions from different orientations. Experimental results on three benchmark EEG datasets demonstrate that DSSA Net outperforms most competitive methods. On the SEED and SEED-IV datasets, it achieves accuracies of 96.61% and 85.07% for subject-dependent emotion recognition, respectively, and 87.03% and 75.86% for subject-independent recognition. On the DEAP dataset, it attains accuracies of 94.97% for valence and 94.73% for arousal. These results showcase the framework's ability to leverage both spatial and spectral differences across brain hemispheres and regions, enhancing classification accuracy for emotion recognition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16625218
Database :
Complementary Index
Journal :
Frontiers in Neurorobotics
Publication Type :
Academic Journal
Accession number :
182345720
Full Text :
https://doi.org/10.3389/fnbot.2024.1481746