Back to Search
Start Over
Modeling and Experimental Verification of In-House Built Portable Ultrafiltration (PUF) System to Maintain Water Quality.
- Source :
- Processes; Dec2024, Vol. 12 Issue 12, p2926, 19p
- Publication Year :
- 2024
-
Abstract
- At present, over 2.6 billion people live without access to a continuous water supply, and nearly 900 million people do not obtain drinking water from reliable sources. To solve these problems, one of this study's goals is to come up with a water-supply system that uses a simple, inexpensive, portable ultrafiltration (PUF) unit. To determine the effectiveness of the portable system, water-quality analysis has been carried out to determine if the system produces filtered water from various sources of water, reaching drinking-water standards. A simple model of the system using Darcy's Law was also obtained to predict permeate flux and transmembrane pressure (TMP). Initially, simulation was performed using nominal values taken from the literature for four (4) parameters, i.e., membrane hydraulic resistance, initial rapid fouling constant, mass transfer coefficient, and foulant bulk concentration. By minimizing the error between the model with these nominal values and experimental values, an improved model with updated parameters was obtained using the Evolutionary Programming (EP) approach. With the updated model, the average error between the model and the experiment was reduced from 32% to 9%. This was further validated with new data taken from the experiment. This improved model with the updated parameter was then used to predict the TMP and compared with the experimental value. Contrasting the optimized model with the existing model indicates that the optimized model predicts membrane performance better, leading to a competent and reliable model for the purification of water using a PUF system built in-house. [ABSTRACT FROM AUTHOR]
- Subjects :
- DARCY'S law
MASS transfer coefficients
WATER purification
WATER quality
WATER supply
Subjects
Details
- Language :
- English
- ISSN :
- 22279717
- Volume :
- 12
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- Processes
- Publication Type :
- Academic Journal
- Accession number :
- 181956464
- Full Text :
- https://doi.org/10.3390/pr12122926