Back to Search Start Over

Polymer/Clay Nanocomposites as Advanced Adsorbents for Textile Wastewater Treatment.

Authors :
Mokhtar, Adel
Asli, Boubekeur
Abdelkrim, Soumia
Hachemaoui, Mohammed
Boukoussa, Bouhadjar
Sassi, Mohammed
Viscusi, Gianluca
Abboud, Mohamed
Source :
Minerals (2075-163X); Dec2024, Vol. 14 Issue 12, p1216, 23p
Publication Year :
2024

Abstract

This review explores the removal of textile dyes from wastewater using advanced polymer/clay composites. It provides an in-depth analysis of the chemical and physical properties of these composites, emphasizing how the combination of polymers and clays creates a synergistic effect that significantly improves the efficiency of dye removal. The structural versatility of the composites, derived from the interaction between the layered clay sheets and the flexible polymer matrices, is detailed, showcasing their enhanced adsorption capacity and catalytic properties for wastewater treatment. The review outlines the key functional groups present in both polymers and clays, which are crucial for binding and degrading a wide range of dyes, including acidic, basic, and reactive dyes. The role of specific interactions, such as hydrogen bonding, ion exchange, and electrostatic attractions between the dye molecules and the composite surface, is highlighted. Moreover, the selection criteria for different types of clays such as montmorillonite, kaolinite, and bentonite and their modifications are examined to demonstrate how structural and surface modifications can further improve their performance in composite materials. Various synthesis methods for creating polymer/clay composites, including in situ polymerization, solution intercalation, and melt blending, are discussed. These fabrication techniques are evaluated for their ability to control particle dispersion, optimize interfacial bonding, and enhance the mechanical and chemical stability of the composites. Furthermore, the review introduces advanced characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), to help researchers assess the morphological, structural, and thermal properties of the composites, aligning these features with their potential application in dye removal. Additionally, the review delves into the primary mechanisms involved in the dye removal process, such as adsorption, photocatalytic degradation, and catalytic reduction. It also provides an overview of the kinetic and thermodynamic models commonly used to describe the adsorption processes in polymer/clay composites. The environmental and operational factors influencing the efficiency of dye removal, such as pH, temperature, and composite dosage, are analyzed in detail, offering practical insights for optimizing performance under various wastewater conditions. In conclusion, this review not only highlights the promising potential of polymer/clay composites for textile dye removal but also identifies current challenges and future research directions. It underscores the importance of developing eco-friendly, cost-effective, and scalable solutions to address the growing concerns related to water pollution and sustainability in wastewater management. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
14
Issue :
12
Database :
Complementary Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
181954477
Full Text :
https://doi.org/10.3390/min14121216