Back to Search Start Over

Nucleation of multi-species crystals: methane cleatrate hydrates, a playground for classical force models.

Authors :
Lauricella, Marco
Ciccotti, Giovanni
Meloni, Simone
Source :
Molecular Physics; Nov2024, Vol. 122 Issue 21/22, p1-14, 14p
Publication Year :
2024

Abstract

Nucleation and growth of methane clathrate hydrates is an exceptional playground to study crystallisation of multi-component, host-guest crystallites when one of the species forming the crystal, the guest, has a higher concentration in the solid than in the liquid phase. This adds problems related to the transport of the low concentration species, here methane. A key aspect in the modelling of clathrates is the water model employed in the simulation. In previous articles, we compared an all-atom force model, TIP4P/Ewald, with a coarse grain one, which is highly appreciated for its computational efficiency. Here, we perform a complementary analysis considering three all-atoms water models: TIP4P/Ewald, TIP4P/ice and TIP5P. A key difference between these models is that the former predicts a much lower freezing temperature. Intuitively, one expects that to lower freezing temperatures of water correspond to lower water/methane–methane gas–clathrate coexistence ones, which determines the degree of supercooling and the degree of supersaturation. Hence, in the simulation conditions, 250 K (500 atm, and fixed methane molar fraction), one expects computational samples made of TIP4P-ice and TIP5P, with a similar freezing temperature ( $ T_f \sim 273 $ T f ∼ 273 K), to be more supersaturated with respect to the case of TIP4P-Ew ( $ T_f \sim 245 $ T f ∼ 245 K), and crystallisation to be faster. Surprisingly, we find that while the nucleation rate is consistent with this prediction, growth rate with TIP4P-ice and TIP5P is much slower than with TIP4P-Ew. The latter was attributed to the slower reorientation of water molecules in strong supercooled conditions, resulting in a lower growth rate. This suggests that the freezing temperature is not a suitable parameter to evaluate the adequacy of a water model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00268976
Volume :
122
Issue :
21/22
Database :
Complementary Index
Journal :
Molecular Physics
Publication Type :
Academic Journal
Accession number :
181777027
Full Text :
https://doi.org/10.1080/00268976.2024.2410484