Back to Search Start Over

Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures.

Authors :
Hwang, Junghyeon
Kim, Chaeheon
Ahn, Jinho
Jeon, Sanghun
Source :
Nano Convergence; 12/16/2024, Vol. 11 Issue 1, p1-9, 9p
Publication Year :
2024

Abstract

The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InO<subscript>x</subscript>) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InO<subscript>x</subscript> and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21965404
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Nano Convergence
Publication Type :
Academic Journal
Accession number :
181710077
Full Text :
https://doi.org/10.1186/s40580-024-00461-2