Back to Search Start Over

Networking 3 K Two-Qubit Logic Gate Quantum Processors to Approach 1 Billion Logic Gate Performance.

Authors :
Guidotti, Daniel
Ma, Xiaoli
Chang, Gee-Kung
Source :
Electronics (2079-9292); Dec2024, Vol. 13 Issue 23, p4604, 20p
Publication Year :
2024

Abstract

Outlined is a proposal designed to culminate in the foundry fabrication of arrays of singly addressable quantum dot sources deterministically emitting single pairs of energy-time entangled photons at C-band wavelengths, each pair having negligible spin-orbit fine structure splitting, each pair being channeled into single mode pig-tail optical fibers. Entangled photons carry quantum state information among distributed quantum servers via I/O ports having two functions: the unconditionally secure distribution of decryption keys to decrypt publicly distributed, encrypted classical bit streams as input to generate corresponding qubit excitations and to convert a stream of quantum nondemolition measurements of qubit states into a classical bit stream. Outlined are key steps necessary to fabricate arrays of on-demand quantum dot sources of entangled photon pairs; the principles are (1) foundry fabrication of arrays of isolated quantum dots, (2) generation of localized sub-surface shear strain in a semiconductor stack, (3) a cryogenic anvil cell, (4) channeling entangled photons into single-mode optical fibers, (5) unconditionally secure decryption key distribution over the fiber network, (6) resonant excitation of a Josephson tunnel junction qubits from classical bits, and (7) conversion of quantum nondemolition measurements of qubit states into a classical bit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
23
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
181654276
Full Text :
https://doi.org/10.3390/electronics13234604