Back to Search
Start Over
Study on damage of CRTS II slab tracks in coated-uncoated transition zones subjected to temperature and train loads.
- Source :
- Proceedings of the Institution of Mechanical Engineers -- Part F -- Journal of Rail & Rapid Transit (Sage Publications, Ltd.); Jan2025, Vol. 239 Issue 1, p17-28, 12p
- Publication Year :
- 2025
-
Abstract
- The CRTS II ballastless track is sensitive to temperature due to its longitudinal continuity. The application of reflective insulation coating can efficiently lower the temperature of the track slab, thereby decelerating track deterioration. Given the considerable length of high-speed railway lines, the application of reflective insulation coatings leads to numerous transitions between coated and uncoated sections. This study investigates the influence of reflective insulation coatings on the structural damage of coated-uncoated transition zones in railways. To this end, a CRTS II slab track model involving the bilinear cohesive zone model and the concrete plastic damage model is established. The model examines the combined impact of high temperature and train loading, aiming to investigate the damage patterns within the coated-uncoated transition zone of the track. The results indicate: (1) During high temperature loading, the center of the track slab layer is predisposed to warping compared to the sides. (2) If the cohesion parameter falls below 0.04 MPa, augmenting the cohesion model parameter effectively alleviates track slab arching. (3) In instances where the track slab lacks complete coverage of reflective insulation coatings, train loading may shift the location of the maximum vertical displacement and interface failure mode. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09544097
- Volume :
- 239
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Proceedings of the Institution of Mechanical Engineers -- Part F -- Journal of Rail & Rapid Transit (Sage Publications, Ltd.)
- Publication Type :
- Academic Journal
- Accession number :
- 181566011
- Full Text :
- https://doi.org/10.1177/09544097241281767