Back to Search
Start Over
Ordinary modules for vertex algebras of 픬픰픭1|2푛.
- Source :
- Journal für die Reine und Angewandte Mathematik; Dec2024, Vol. 2024 Issue 817, p1-31, 31p
- Publication Year :
- 2024
-
Abstract
- We show that the affine vertex superalgebra V k (o s p 1 | 2 n ) at generic level 푘 embeds in the equivariant 풲-algebra of s p 2 n times 4 n free fermions. This has two corollaries: (1) it provides a new proof that, for generic 푘, the coset Com (V k (s p 2 n ) , V k (o s p 1 | 2 n )) is isomorphic to W ℓ (s p 2 n ) for ℓ = − (n + 1) + (k + n + 1) / (2 k + 2 n + 1) , and (2) we obtain the decomposition of ordinary V k (o s p 1 | 2 n ) -modules into V k (s p 2 n ) ⊗ W ℓ (s p 2 n ) -modules. Next, if 푘 is an admissible level and ℓ is a non-degenerate admissible level for s p 2 n , we show that the simple algebra L k (o s p 1 | 2 n ) is an extension of the simple subalgebra L k (s p 2 n ) ⊗ W ℓ (s p 2 n ) . Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L k (o s p 1 | 2 n ) -modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects. It is equivalent to a certain subcategory of W ℓ (s p 2 n ) -modules. A similar result also holds for the category of Ramond twisted modules. Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L k (s p 2 n ) -modules are rigid. [ABSTRACT FROM AUTHOR]
- Subjects :
- MODULES (Algebra)
FERMIONS
ALGEBRA
VERTEX operator algebras
Subjects
Details
- Language :
- English
- ISSN :
- 00754102
- Volume :
- 2024
- Issue :
- 817
- Database :
- Complementary Index
- Journal :
- Journal für die Reine und Angewandte Mathematik
- Publication Type :
- Academic Journal
- Accession number :
- 181468744
- Full Text :
- https://doi.org/10.1515/crelle-2024-0060