Back to Search
Start Over
Mapping the nonequilibrium order parameter of a quasi-two dimensional charge density wave system.
- Source :
- Communications Physics; 11/28/2024, Vol. 7 Issue 1, p1-6, 6p
- Publication Year :
- 2024
-
Abstract
- The driving force of a charge density wave (CDW) transition in quasi-two dimensional systems is still debated, while being crucial in understanding electronic correlation in such materials. Here we use femtosecond time- and angle-resolved photoemission spectroscopy combined with computational methods to investigate the coherent lattice dynamics of a prototypical CDW system. The photo-induced temporal evolution of the periodic lattice distortion associated with the amplitude mode reveals the dynamics of the free energy functional governing the order parameter. Our approach establishes that optically-induced screening rather than CDW melting at the electronic level leads to a transiently modified potential which explains the anharmonic behaviour of the amplitude mode and discloses the structural origin of the symmetry-breaking phase transition. The charge density wave (CDW) formation mechanisms in 2D and quasi-2D systems are still highly debated. Here, the authors combine time-resolved ARPES and ab initio calculations to map the free energy functional in the prototypical CDW compound 1T-TaSe2 concluding that the CDW state is driven by structural rather than electronic instabilities. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 7
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- 181251116
- Full Text :
- https://doi.org/10.1038/s42005-024-01879-0