Back to Search Start Over

Humic substances increase tomato tolerance to osmotic stress while modulating vertically transmitted endophytic bacterial communities.

Authors :
Lengrand, Salomé
Dubois, Benjamin
Pesenti, Lena
Debode, Frederic
Legrève, Anne
Source :
Frontiers in Plant Science; 2024, p1-14, 14p
Publication Year :
2024

Abstract

While humic substances (HS) are recognized for their role in enhancing plant growth under abiotic stress by modulating hormonal and redox metabolisms, a key question remains: how do HS influence the microbiota associated with plants? This study hypothesizes that the effects of HS extend beyond plant physiology, impacting the plant-associated bacterial community. To explore this, we investigated the combined and individual impacts of HS and osmotic stress on tomato plant physiology and root endophytic communities. Tomatoes were grown within a sterile hydroponic system, which allowed the experiment to focus on seed-transmitted endophytic bacteria. Moreover, sequencing the 16S-ITS-23S region of the rrn operon (~4,500 bp) in a metabarcoding assay using the PNA-chr11 clamp nearly eliminated the reads assigned to Solanum lycopersicum and allowed the species-level identification of these communities. Our findings revealed that HS, osmotic stress, and their combined application induce changes in bacterial endophytic communities. Osmotic stress led to reduced plant growth and a decrease in Bradyrhizobium sp., while the application of HS under osmotic stress resulted in increased tomato growth, accompanied by an increase in Frigoribacterium sp., Roseateles sp., and Hymenobacter sp., along with a decrease in Sphingomonas sp. Finally, HS application under non-stress conditions did not affect plant growth but did alter the endophytic community, increasing Hymenobacter sp. and decreasing Sphingomonas sp. This study enhances the understanding of plant–endophyte interactions under stress and HS application, highlighting the significance of the vertically transmitted core microbiome in tomato roots and suggesting new insights into the mode of action of HS that was used as a biostimulant. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664462X
Database :
Complementary Index
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
181249989
Full Text :
https://doi.org/10.3389/fpls.2024.1488671