Back to Search Start Over

Dual-frequency electromagnetic sounding of a Triton ocean from a single flyby.

Authors :
Khurana, Krishan K.
Liu, Jiang
Castillo-Rogez, Julie
Cochrane, Corey
Nimmo, Francis
Prockter, Louise M.
Source :
Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences; 12/252024, Vol. 382 Issue 2286, p1-17, 17p
Publication Year :
2024

Abstract

Triton, the largest satellite of Neptune, is in a retrograde orbit and is likely a captured Kuiper Belt Object (KBO). Triton has a mean density of only 2.061 gm/cm<superscript>3</superscript> and is therefore believed to have a 250–400 km thick hydrosphere. Triton is also one of the few planetary satellites to possess a thick ionosphere whose height-integrated Pedersen conductivity exceeds 10<superscript>4</superscript> S, complicating the sounding of Triton's subsurface using electromagnetic induction. Triton experiences a time-varying magnetic field dominated by two periods, one at 14.4 h, at the synodic rotation period of Neptune (from Neptune's tilted field) and one at 141 h, at the orbital period of Triton (from large inclination of Triton's orbit). We show that for most models of ionospheric conductivity, the 14.4 h wave creates a large response from the ionosphere itself and is unable to sound the putative ocean below. However, the 141 h wave penetrates the ionosphere easily and provides information on Triton's ocean. We introduce a technique that allows us to determine the complex magnetic moments generated at the two key periods from the magnetic data from a single flyby, allowing us to infer the presence of a subsurface ocean. This article is part of the theme issue 'Magnetometric remote sensing of Earth and planetary oceans'. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1364503X
Volume :
382
Issue :
2286
Database :
Complementary Index
Journal :
Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
Publication Type :
Academic Journal
Accession number :
181235780
Full Text :
https://doi.org/10.1098/rsta.2024.0087