Back to Search Start Over

Experimental and Numerical Analysis of the Impact Resistance of Polyurethane Foam Aluminum-Concrete Sandwich Structures.

Authors :
Zhang, Yong
Yin, Fenfang
Ma, Junwei
Source :
Buildings (2075-5309); Nov2024, Vol. 14 Issue 11, p3573, 14p
Publication Year :
2024

Abstract

The objective of this research paper is to examine the shock-absorption capabilities of sandwich structures that utilize polyurethane foam and aluminum as energy-absorbing materials. A series of drop weight impact tests were conducted on sandwich structures comprising polyurethane foam, aluminum, and concrete. The investigation encompasses variations in the thickness of the polyurethane foam-aluminum absorption layer, the impact height, and different structural combinations, coupled with numerical simulations. Results indicate that as the thickness of the polyurethane foam-aluminum energy absorption layer increases, the energy absorbed by the composite structure also increases. However, the rate of this increase tapers off as the layer thickness continues to grow. The impact height influences energy absorption within a defined range, enabling optimal utilization of the deformation and energy absorption capacities of the polyurethane foam-aluminum layer. Notably, the double-sandwich structure outperforms the single-sandwich structure in terms of impact resistance. The incorporation of the polyurethane foam-aluminum sandwich structure significantly enhances the impact resilience of concrete. Among the tested configurations, the double-sandwich structure composed of polyurethane foam, aluminum, and concrete exhibits the optimal absorption performance. Nevertheless, the layered nature of the structure significantly increases its construction complexity, potentially impacting the practical feasibility of utilizing the polyurethane foam-aluminum-concrete composite structure in real-world applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20755309
Volume :
14
Issue :
11
Database :
Complementary Index
Journal :
Buildings (2075-5309)
Publication Type :
Academic Journal
Accession number :
181189803
Full Text :
https://doi.org/10.3390/buildings14113573