Back to Search Start Over

4-Total Mean Cordial Labeling of Some Trees.

Authors :
Ponraj, R.
Subbulakshmi, S.
Source :
Journal of Algorithms & Computation; Aug2024, Vol. 56 Issue 1, p44-54, 11p
Publication Year :
2024

Abstract

Let G be a graph. Let f : V (G) → {0, 1, 2, . . ., k -- 1} be a function where k ∈ N and k > 1. For each edge uv, assign the label f (uv) = [f(u)+f(v)/2]. f is called a k-total mean cordial labeling of G if |t<subscript>mf</subscript> (i) -- t<subscript>mf</subscript> (j)| ≤ 1, for all i, j ∈ {0, 1, 2, . . ., k -- 1}, where t<subscript>mf</subscript> (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, . . ., k -- 1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. In this paper we examine the 4-Total mean cordial labeling of some trees. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24762776
Volume :
56
Issue :
1
Database :
Complementary Index
Journal :
Journal of Algorithms & Computation
Publication Type :
Academic Journal
Accession number :
181015435