Back to Search
Start Over
4-Total Mean Cordial Labeling of Some Trees.
- Source :
- Journal of Algorithms & Computation; Aug2024, Vol. 56 Issue 1, p44-54, 11p
- Publication Year :
- 2024
-
Abstract
- Let G be a graph. Let f : V (G) → {0, 1, 2, . . ., k -- 1} be a function where k ∈ N and k > 1. For each edge uv, assign the label f (uv) = [f(u)+f(v)/2]. f is called a k-total mean cordial labeling of G if |t<subscript>mf</subscript> (i) -- t<subscript>mf</subscript> (j)| ≤ 1, for all i, j ∈ {0, 1, 2, . . ., k -- 1}, where t<subscript>mf</subscript> (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, . . ., k -- 1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. In this paper we examine the 4-Total mean cordial labeling of some trees. [ABSTRACT FROM AUTHOR]
- Subjects :
- GRAPH labelings
TREES
GRAPHIC methods
ARITHMETIC mean
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 24762776
- Volume :
- 56
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal of Algorithms & Computation
- Publication Type :
- Academic Journal
- Accession number :
- 181015435