Back to Search Start Over

Improving the electromechanical deformability of MWCNT/silicone composites via encapsulating MWCNT with polyphenols and multilayered structure regulation.

Authors :
Sun, Yue
Zhang, Jiale
Chen, Tao
Zhang, Yanting
Wu, Chonggang
Gong, Xinghou
Hu, Tao
Source :
Journal of Applied Polymer Science; 12/20/2024, Vol. 141 Issue 48, p1-13, 13p
Publication Year :
2024

Abstract

Silicone rubber (SR) is an ideal dielectric elastomer substrate due to its excellent flexibility and fast response speed. However, the innate low dielectric permittivity (ε) of SR generally requires a rather high driving voltage that restricts its widespread application. Typical attempts to increase ε of SR usually deteriorate either its flexibility or electrical stability. Herein, conductive multi‐walled carbon nanotube (MWCNT) were first surface modified with polyphenols (PNs) (MWCNT@PNs), aiming to facilitate its well dispersion within SR matrix, which may maintain the softness and electrical stability of SR via suppressing concentrated physical crosslinking and local leakage current flow. Then, five‐layered MWCNT@PNs/SR composites were prepared with the outer two insulating layers of SR while middle three dielectric layers of MWCNT@PNs filled SR. The multilayered structure further hindered the formation of conductive pathways through the composites, promising a high breakdown strength of the composites. Therefore, the multilayered MWCNT@PNs/SR composites exhibited increased ε, maintained low Young's modulus and electrical breakdown strength compared with pure SR of the same five‐layered structure. Among them, the composite with uniformly distributed MWCNT@PNs (m‐1: 1: 1) showed a highest actuation strain of 11.9% (at 19.6 kV mm−1), which was 4.1 times higher than that of SR (2.9% at 19.1 kV mm−1). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218995
Volume :
141
Issue :
48
Database :
Complementary Index
Journal :
Journal of Applied Polymer Science
Publication Type :
Academic Journal
Accession number :
180898929
Full Text :
https://doi.org/10.1002/app.56288