Back to Search
Start Over
Double‐Hollow Au@CdS Yolk@Shell Nanostructures as Superior Plasmonic Photocatalysts for Solar Hydrogen Production.
- Source :
- Advanced Functional Materials; 11/12/2024, Vol. 34 Issue 46, p1-18, 18p
- Publication Year :
- 2024
-
Abstract
- Structural engineering has proven effective in tailoring the photocatalytic properties of semiconductor nanostructures. In this work, a sophisticated double‐hollow yolk@shell nanostructure composed of a plasmonic, mobile, hollow Au nanosphere (HGN) yolk and a permeable, hollow CdS shell is proposed to achieve remarkable solar hydrogen production. The shell thickness of HGN@CdS is finely adjusted from 7.7, 18.4 to 24.5 nm to investigate its influence on the photocatalytic performance. Compared with pure HGN, pure CdS, a physical mixture of HGN and CdS, and a counterpart single‐hollow cit‐Au@CdS yolk@shell nanostructure, HGN@CdS exhibits superior hydrogen production under visible light illumination (λ = 400–700 nm). The apparent quantum yield of hydrogen production reaches 8.2% at 320 nm, 6.2% at 420 nm, and 4.4% at 660 nm. The plasmon‐enhanced activity at 660 nm is exceptional, surpassing the plasmon‐induced photoactivities of the state‐of‐the‐art plasmonic photocatalysts ever reported. The superiority of HGN@CdS originates from the creation of charge separation state at HGN/CdS heterojunction, the considerably long‐lived hot electrons of plasmonic HGN, the magnified electric field, and the advantageous features of double‐hollow yolk@shell nanostructures. The findings can provide a guideline for the rational design of versatile double‐hollow yolk@shell nanostructures for widespread photocatalytic applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1616301X
- Volume :
- 34
- Issue :
- 46
- Database :
- Complementary Index
- Journal :
- Advanced Functional Materials
- Publication Type :
- Academic Journal
- Accession number :
- 180802900
- Full Text :
- https://doi.org/10.1002/adfm.202402392