Back to Search Start Over

Implementing AI-Driven Bed Sensors: Perspectives from Interdisciplinary Teams in Geriatric Care.

Authors :
Acosta, Cromwell G.
Ye, Yayan
Wong, Karen Lok Yi
Zhao, Yong
Lawrence, Joanna
Towell, Michelle
D'Oyley, Heather
Mackay-Dunn, Marion
Chow, Bryan
Hung, Lillian
Source :
Sensors (14248220); Nov2024, Vol. 24 Issue 21, p6803, 12p
Publication Year :
2024

Abstract

Sleep is a crucial aspect of geriatric assessment for hospitalized older adults, and implementing AI-driven technology for sleep monitoring can significantly enhance the rehabilitation process. Sleepsense, an AI-driven sleep-tracking device, provides real-time data and insights, enabling healthcare professionals to tailor interventions and improve sleep quality. This study explores the perspectives of an interdisciplinary hospital team on implementing Sleepsense in geriatric hospital care. Using the interpretive description approach, we conducted focus groups with physicians, nurses, care aides, and an activity worker. The Consolidated Framework for Implementation Research (CFIR) informed our thematic analysis to identify barriers and facilitators to implementation. Among 27 healthcare staff, predominantly female (88.89%) and Asian (74.1%) and mostly aged 30–50 years, themes emerged that Sleepsense is perceived as a timesaving and data-driven tool that enhances patient monitoring and assessment. However, barriers such as resistance to change and concerns about trusting the device for patient comfort and safety were noted, while facilitators included training and staff engagement. The CFIR framework proved useful for analyzing implementation barriers and facilitators, suggesting future research should prioritize effective strategies for interdisciplinary team support to enhance innovation adoption and patient outcomes in rehabilitation settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
21
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
180784105
Full Text :
https://doi.org/10.3390/s24216803