Back to Search Start Over

Adaptive Weighted Particle Swarm Optimization for Controlling Multiple Switched Reluctance Motors with Enhanced Deviatoric Coupling Control.

Authors :
Zhang, Tianyu
Xu, Xianglian
Zhang, Fangqing
Gu, Yifeng
Deng, Kaitian
Xu, Yuli
Xie, Tunzhen
Song, Yuanqing
Source :
Electronics (2079-9292); Nov2024, Vol. 13 Issue 21, p4320, 19p
Publication Year :
2024

Abstract

Switched reluctance motors (SRMs) are widely used in industrial applications due to their advantages. Multi-motor synchronous control systems are crucial in modern industry, as their control strategies significantly impact synchronization performance. Traditional deviation coupling control structures face limitations during the startup phase, leading to excessive tracking errors and exacerbated by uneven load distribution, resulting in desynchronized motor acceleration and increased speed synchronization errors. This study proposes a modified deviation coupling control method based on an adaptive weighted particle swarm optimization (PSO) algorithm to enhance multi-motor synchronization performance. Traditional deviation coupling control applies equal reference torque inputs to each motor's current loop, failing to address uneven load distribution and causing inconsistent accelerations. To resolve this, a gain equation based on speed deviation is introduced, incorporating self-tracking error and gain coefficients for dynamic synchronization error compensation. The gain coefficients are optimized using the adaptive weighted PSO algorithm to improve system adaptability. A simulation model of a synchronization control system for three SRMs was developed in the Matlab/Simulink R2023b environment. This model compares the synchronization performance of traditional deviation coupling, Fuzzy-PID improved structure, and adaptive PSO improved structure during motor startup, sudden speed increases, and load disturbances. The validated deviation coupling control structure achieved the initial set speed in approximately 0.236 s, demonstrating faster convergence and a 6.35% reduction in settling time. In both the motor startup and sudden speed increase phases, the two optimized methods outperformed the traditional structure in dynamic performance and synchronization accuracy, with the adaptive PSO structure improving synchronization accuracy by 54% and 37.17% over the Fuzzy-PID structure, respectively. Therefore, the PSO-optimized control system demonstrates faster convergence, improved stability, and enhanced synchronization performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
21
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
180781867
Full Text :
https://doi.org/10.3390/electronics13214320