Back to Search
Start Over
Spatiotemporal Variation Characteristics of Extreme Precipitation in the Mid–Lower Reaches of the Yangtze River Basin Based on Precipitation Events.
- Source :
- Sustainability (2071-1050); Nov2024, Vol. 16 Issue 21, p9197, 21p
- Publication Year :
- 2024
-
Abstract
- In addition to greater precipitation on extreme days of precipitation, preceding and succeeding precipitation (PSP) is often an objective component of flooding in the mid–lower reaches of the Yangtze River Basin (MLRYRB). In this study, focused on the temporal distribution pattern of precipitation, the concept of an extreme precipitation event (EPE), defined as a consecutive precipitation event having at least one daily precipitation extreme, is proposed to consider PSP in an extreme event. We analyzed the spatiotemporal variation of four types of EPEs based on daily data obtained from 130 monitoring stations covering 1960–2019. Extreme precipitation increased significantly over the last 60 years (p < 0.01). The frequency and precipitation amount of single-day EPEs accounted for only 13% and 21%, respectively, while multi-day continuous EPE types that are associated with PSP accounted for 87% and 79%, respectively, confirming the connotations of EPEs. The front and late EPEs under the 100-year return level reached 250 mm and 230 mm, respectively. Furthermore, climate warming could lead to significant increases in the frequency of single-day and late EPEs, particularly in the southern region. The EPE concept may be helpful in exploring disaster-causing processes under extreme weather, and it provides a theoretical basis for deriving the precipitation hazard chain, which is more applicable to basins with long precipitation durations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20711050
- Volume :
- 16
- Issue :
- 21
- Database :
- Complementary Index
- Journal :
- Sustainability (2071-1050)
- Publication Type :
- Academic Journal
- Accession number :
- 180780710
- Full Text :
- https://doi.org/10.3390/su16219197