Back to Search Start Over

A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis.

Authors :
AlSalman, Hussain
Alfakih, Taha
Al-Rakhami, Mabrook
Hassan, Mohammad Mehedi
Alabrah, Amerah
Source :
CMES-Computer Modeling in Engineering & Sciences; 2024, Vol. 141 Issue 3, p2575-2608, 34p
Publication Year :
2024

Abstract

Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics, integral for early detection and effective treatment. While deep learning has significantly advanced the analysis of mammographic images, challenges such as low contrast, image noise, and the high dimensionality of features often degrade model performance. Addressing these challenges, our study introduces a novel method integrating Genetic Algorithms (GA) with pre-trained Convolutional Neural Network (CNN) models to enhance feature selection and classification accuracy. Our approach involves a systematic process: first, we employ widely-used CNN architectures (VGG16, VGG19, MobileNet, and DenseNet) to extract a broad range of features from the Medical Image Analysis Society (MIAS) mammography dataset. Subsequently, a GA optimizes these features by selecting the most relevant and least redundant, aiming to overcome the typical pitfalls of high dimensionality. The selected features are then utilized to train several classifiers, including Linear and Polynomial Support Vector Machines (SVMs), K-Nearest Neighbors, Decision Trees, and Random Forests, enabling a robust evaluation of the method's effectiveness across varied learning algorithms. Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy, from 83.33% to 89.58%, underscoring the method's efficacy. By detailing these steps, we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15261492
Volume :
141
Issue :
3
Database :
Complementary Index
Journal :
CMES-Computer Modeling in Engineering & Sciences
Publication Type :
Academic Journal
Accession number :
180704135
Full Text :
https://doi.org/10.32604/cmes.2024.055011