Back to Search
Start Over
Locking-Free Kriging-Based Curved Beam Elements with the Discrete Strain Gap Technique.
- Source :
- International Journal of Computational Methods; Nov2024, Vol. 21 Issue 9, p1-38, 38p
- Publication Year :
- 2024
-
Abstract
- Kriging-based finite element method (K-FEM) is an enhancement of the FEM using Kriging interpolation in place of the conventional polynomial interpolation. This paper presents the development of the K-FEM for analysis of curved beams based on a deep arc theory, which accounts for membrane and shear deformation. The discrete strain gap technique is employed to circumvent shear locking and membrane locking. The numerical tests show that the Kriging-based elements are free from any locking, are able to provide highly accurate solutions with a regular course mesh discretization, and have excellent convergence characteristics, especially for circular beams. [ABSTRACT FROM AUTHOR]
- Subjects :
- CURVED beams
SHEAR (Mechanics)
FINITE element method
INTERPOLATION
KRIGING
Subjects
Details
- Language :
- English
- ISSN :
- 02198762
- Volume :
- 21
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- International Journal of Computational Methods
- Publication Type :
- Academic Journal
- Accession number :
- 180681569
- Full Text :
- https://doi.org/10.1142/S0219876224500336