Back to Search
Start Over
A novel digital-twin approach based on transformer for photovoltaic power prediction.
- Source :
- Scientific Reports; 11/4/2024, Vol. 14 Issue 1, p1-17, 17p
- Publication Year :
- 2024
-
Abstract
- The prediction of photovoltaic (PV) system performance has been intensively studied as it plays an important role in the context of sustainability and renewable energy generation. In this paper, a digital twin (DT) model based on a domain-matched transformer is proposed using convolutional neural network (CNN) for domain-invariant feature extraction, transformer for PV performance prediction, and domain adaptation neural network (DANN) for domain adaptation. The effectiveness of the proposed framework is validated using a PV power prediction dataset. The results indicate an accuracy improvement of up to 39.99% in model performance. Additionally, experiments with varying numbers of timestamps demonstrate enhanced PV power prediction performance as parameters are continuously updated within the DT framework, offering a reliable solution for real-time and adaptive PV power forecasting. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 180654295
- Full Text :
- https://doi.org/10.1038/s41598-024-76711-4