Back to Search Start Over

Experimental study on the synchronization mechanism and trigger characteristic density of vertical evacuation in crowds.

Authors :
Zhang, Longmei
Wu, Xin
Lin, Huali
Zhang, Man
Liu, Yonghong
Source :
Scientific Reports; 10/30/2024, Vol. 14 Issue 1, p1-19, 19p
Publication Year :
2024

Abstract

Due to simultaneous horizontal and vertical displacement during vertical evacuation, the consequences of stampede congestion accidents can be more severe. Generally, pedestrians trigger a synchronization mechanism at some point during the vertical evacuation process. This synchronization behavior helps prevent stampede congestion and improves evacuation efficiency. This paper designs a well-controlled single-file vertical evacuation experiment. After the experiment, the video footage is imported into the TRACKER system to extract the coordinates of pedestrian step movements, after which the experimental data undergo calculations and visual analysis. The research findings indicate the following: Firstly, when the crowd coordinates trigger the synchronization mechanism, this behavior remains stable as long as pedestrian speed and direction are unchanged; Secondly, the variation in footstep speed over time is not directly related to the footstep synchronization rate of the crowd; Lastly, this study calculated the characteristic density value most likely to trigger the synchronization mechanism during vertical evacuation. This research deepens our understanding of crowd dynamics, reveals the characteristics of pedestrian movement during vertical evacuation, and proposes evacuation guidance strategies based on these features. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
180637148
Full Text :
https://doi.org/10.1038/s41598-024-77726-7