Cite
Precisely Tunable Instantaneous Carbon Rearrangement Enables Low‐Working‐Potential Hard Carbon Toward Sodium‐Ion Batteries with Enhanced Energy Density.
MLA
Liu, Junjie, et al. “Precisely Tunable Instantaneous Carbon Rearrangement Enables Low‐Working‐Potential Hard Carbon Toward Sodium‐Ion Batteries with Enhanced Energy Density.” Advanced Materials, vol. 36, no. 44, Nov. 2024, pp. 1–14. EBSCOhost, https://doi.org/10.1002/adma.202407369.
APA
Liu, J., You, Y., Huang, L., Zheng, Q., Sun, Z., Fang, K., Sha, L., Liu, M., Zhan, X., Zhao, J., Han, Y., Zhang, Q., Chen, Y., Wu, S., & Zhang, L. (2024). Precisely Tunable Instantaneous Carbon Rearrangement Enables Low‐Working‐Potential Hard Carbon Toward Sodium‐Ion Batteries with Enhanced Energy Density. Advanced Materials, 36(44), 1–14. https://doi.org/10.1002/adma.202407369
Chicago
Liu, Junjie, Yiwei You, Ling Huang, Qizheng Zheng, Zhefei Sun, Kai Fang, Liyuan Sha, et al. 2024. “Precisely Tunable Instantaneous Carbon Rearrangement Enables Low‐Working‐Potential Hard Carbon Toward Sodium‐Ion Batteries with Enhanced Energy Density.” Advanced Materials 36 (44): 1–14. doi:10.1002/adma.202407369.