Back to Search Start Over

Influence and Mechanism of Fertilization and Irrigation of Heavy Metal Accumulation in Salinized Soils.

Authors :
Yu, Dandan
Miao, Qingfeng
Shi, Haibin
Feng, Zhuangzhuang
Feng, Weiying
Li, Zhen
Gonçalves, José Manuel
Source :
Agriculture; Basel; Oct2024, Vol. 14 Issue 10, p1694, 20p
Publication Year :
2024

Abstract

The impact of fertilization and irrigation on heavy metal accumulation in saline–alkali soil and its underlying mechanisms are critical issues given the constraints that soil salinization places on agricultural development and crop quality. This study addressed these issues by investigating the effects of adjusting organic fertilizer types, proportions, and irrigation volumes on the physicochemical properties of lightly to moderately saline–alkali soils and analyzing the interaction mechanisms between microorganisms and heavy metals. The results indicate that the rational application of organic fertilizers combined with supplemental irrigation can mitigate soil salinity accumulation and water deficits, and reduce the soil pH, thereby enhancing soil oxidation, promoting nitrogen transformation and increasing nitrate–nitrogen levels. As the proportion of organic fertilizers increased, heavy metal residues, enrichment, and risk indices in the crop grains also increased. Compared to no irrigation, supplemental irrigation of 22 mm during the grain-filling stage increased soil surface Cd content, Zn content, and the potential ecological risk index (HRI) by 10.2%, 3.1%, and 8%, respectively, while simultaneously reducing the heavy metal content in grains by 12–13.5% and decreasing heavy metal enrichment. Principal component analysis revealed the primary factors influencing Cu and Zn residues and Cd accumulation in the crop grains. Soil salinity was significantly negatively correlated with soil pH, organic matter, total nitrogen, and ammonium nitrogen, whereas soil organic matter, total nitrogen, ammonium nitrogen, soil pH, oxidation–reduction potential, soluble nitrogen, and microbial biomass nitrogen were positively correlated. The accumulation and residues of Zn and Cu in the soil were more closely correlated with the soil properties compared to those of Cd. Specifically, Zn accumulation on the soil surface was primarily related to aliphatic organic functional groups, followed by soil salinity. Residual Zn in the crop grains was primarily associated with soil oxidation–reduction properties, followed by soil moisture content. The accumulation of Cu on the soil surface was mainly correlated with the microbial biomass carbon (MBC), whereas the residual Cu in the crop grains was primarily linked to the soil moisture content. These findings provide theoretical insights for improving saline–alkali soils and managing heavy metal contamination, with implications for sustainable agriculture and environmental protection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20770472
Volume :
14
Issue :
10
Database :
Complementary Index
Journal :
Agriculture; Basel
Publication Type :
Academic Journal
Accession number :
180527611
Full Text :
https://doi.org/10.3390/agriculture14101694