Back to Search Start Over

Reabsorption‐Free Scintillating Hetero‐Ligand MOF Crystals Activated by Ultrafast Energy Transfer.

Authors :
Orfano, Matteo
Perego, Jacopo
Bezuidenhout, Charl X.
Villa, Irene
Lorenzi, Roberto
Sabot, Benoit
Pierre, Sylvie
Bracco, Silvia
Piva, Sergio
Comotti, Angiolina
Monguzzi, Angelo
Source :
Advanced Functional Materials; 10/29/2024, Vol. 34 Issue 44, p1-8, 8p
Publication Year :
2024

Abstract

Fast photoluminescence and scintillation with a Stokes shift larger than 1 eV is achieved in hetero‐ligand metal–organic framework (MOF) crystals comprising inorganic linking nodes and fluorescent conjugated ligands. By finely engineering the MOF composition with the use of ligands with strictly complementary emission and absorption properties and highly delocalized molecular electronic orbitals, the singlet excitons diffusion is enhanced through the ligand framework, fully exploiting both Förster and Dexter energy transfer mechanisms. This allows for the sensitization of energy acceptor ligand fluorescence by ultrafast non‐radiative energy transfer with a rate up to the THz range. This efficient antenna effect instantly activates the MOF scintillation with a Stokes shift as large as 1.3 eV in the blue spectral range, matching the highest sensitivity spectral window of the best photodetector available. This is obtained using a minimal doping level of the energy acceptor species, with a consequent elimination of emission re‐absorption that allows the achievement of a 500% increment of the MOFs scintillation efficiency and the detection of the radioactive krypton isotope 85Kr from the gas phase with an improved sensitivity compared with the reference material. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
44
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
180504047
Full Text :
https://doi.org/10.1002/adfm.202404480