Back to Search Start Over

Protoporphyrin IX-Dependent Antiviral Effects of 5-Aminolevulinic Acid against Feline Coronavirus Type II.

Authors :
Doki, Tomoyoshi
Shimada, Junna
Tokunaga, Misa
To, Kaito
Orino, Koichi
Takano, Tomomi
Source :
Viruses (1999-4915); Oct2024, Vol. 16 Issue 10, p1595, 13p
Publication Year :
2024

Abstract

5-Aminolevulinic acid (5-ALA), a non-proteinogenic amino acid, is an intermediate in the biosynthesis of heme and exerts antiviral effects against feline coronavirus (FCoV); however, the underlying mechanisms remain unclear. In the biosynthesis of heme, 5-ALA is condensed and converted to protoporphyrin IX (PpIX), which is then transformed into heme by the insertion of ferrous iron. Previous research has suggested that the metabolites generated during heme biosynthesis contribute to the antiviral effects of 5-ALA. Therefore, the present study investigated the in vitro mechanisms responsible for the antiviral effects of 5-ALA. The results obtained revealed that 5-ALA and PpIX both effectively reduced the viral titer in the supernatant of FCoV-infected fcwf-4 cells. Moreover, PpIX exerted virucidal effects against FCoV. We also confirmed that 5-ALA increased PpIX levels in cells. While hemin induced heme oxygenase-1 gene expression, it did not reduce the viral titer in the supernatant. Sodium ferrous citrate decreased PpIX levels and suppressed the antiviral effects of 5-ALA. Collectively, these results suggest that the antiviral effects of 5-ALA against FCoV are dependent on PpIX. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994915
Volume :
16
Issue :
10
Database :
Complementary Index
Journal :
Viruses (1999-4915)
Publication Type :
Academic Journal
Accession number :
180485850
Full Text :
https://doi.org/10.3390/v16101595