Back to Search Start Over

Crystalline Silicon Photocathode with Tapered Microwire Arrays Achieving a High Current Density of 41.7 mA cm⁻2.

Authors :
Jin, Wonjoo
Lee, Youri
Shin, Changhwan
Park, Jeonghwan
Jang, Ji‐Wook
Seo, Kwanyong
Source :
Advanced Materials Interfaces; 10/24/2024, Vol. 11 Issue 30, p1-6, 6p
Publication Year :
2024

Abstract

To design a high‐efficiency crystalline silicon (c‐Si) photocathode, the photovoltage and photocurrent generated by the device must be maximized because these factors directly affect the hydrogen evolution reaction (HER). In this study, a c‐Si p–n junction is used to enhance the photovoltage of the c‐Si photocathode, and a tapered microwire array structure is introduced to increase the photocurrent. When tapered microwire arrays are employed on the front surface of the c‐Si photocathode, a current density of ≈41.7 mA cm−2 is achieved at 0 VRHE (reversible hydrogen electrode); this current density is the highest among all reported photocathodes including c‐Si, approaching the theoretical maximum value for c‐Si. Furthermore, a Ni foil/Pt catalyst is introduced on the opposite side of the incident light, simultaneously serving as an electrocatalyst to reduce side reactions in the HER and encapsulation layer to prevent c‐Si from contacting the electrolyte. Thus, a stable device is developed using c‐Si photoelectrochemical cells that have an efficiency exceeding 97% for >1000 h. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21967350
Volume :
11
Issue :
30
Database :
Complementary Index
Journal :
Advanced Materials Interfaces
Publication Type :
Academic Journal
Accession number :
180474838
Full Text :
https://doi.org/10.1002/admi.202400178