Back to Search Start Over

AgriScan: Next.js powered cross-platform solution for automated plant disease diagnosis and crop health management.

Authors :
Seyam, Touhidul Alam
Pathak, Abhijit
Source :
Journal of Electrical Systems & Information Technology; 10/24/2024, Vol. 11 Issue 1, p1-23, 23p
Publication Year :
2024

Abstract

Plant diseases present a formidable challenge to the agricultural sector worldwide, leading to significant losses, with the US experiencing annual losses amounting to one-third of crop production. Diagnosis of crop diseases through optical observation of leaf symptoms is particularly daunting for farmers with limited resources. Therefore, there is an urgent need for enhanced detection, monitoring, and prediction methods to mitigate agricultural losses effectively. Harnessing the power of computer vision and deep learning, this paper introduces a cross-platform system designed to automate plant leaf disease diagnosis. The system employs convolutional neural networks to classify 46 disease categories, trained on a dataset comprising 96,206 images of healthy and infected plant leaves. The user interface, accessible across multiple platforms including Android, iOS, Windows, and Linux, allows farmers to capture photos of infected leaves and receive real-time disease classification along with confidence percentages. By empowering farmers to maintain crop health and prevent the application of incorrect fertilizers, the system aims to optimize crop productivity. Performance evaluation includes metrics such as classification accuracy and processing time, with the model achieving an impressive overall accuracy of 93.45% across 46 common disease classes spanning 16 crop species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23147172
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Journal of Electrical Systems & Information Technology
Publication Type :
Academic Journal
Accession number :
180457526
Full Text :
https://doi.org/10.1186/s43067-024-00169-7