Back to Search
Start Over
Biosynthesis of bridged tricyclic sesquiterpenes in Inula lineariifolia.
- Source :
- Plant Journal; Oct2024, Vol. 120 Issue 2, p658-673, 16p
- Publication Year :
- 2024
-
Abstract
- SUMMARY: Presilphiperfolane‐type sesquiterpenes represent a unique group of atypical sesquiterpenoids characterized by their distinctive tricyclic structure. They have significant potential as lead compounds for pharmaceutical and agrochemical development. Herein, we utilized a transcriptomic approach to identify a terpene synthase (TPS) gene responsible for the biosynthesis of rare presilphiperfolane‐type sesquiterpenes in Inula lineariifolia, designated as IlTPS1. Through phylogenetic analysis, we have identified the evolutionary conservation of key motifs, including RR(x)8W, DDxxD, and NSE/DTE in IlTPS1, which are shared with other tricyclic sesquiterpene synthases in the TPS‐a subfamily of Asteraceae plants. Subsequent biochemical characterization of recombinant IlTPS1 revealed it to be a multiproduct enzyme responsible for the synthesis of various tricyclic sesquiterpene alcohols from farnesyl diphosphate (FPP), resulting in production of seven distinct sesquiterpenes. Mass spectrometry and nuclear magnetic resonance (NMR) spectrometry identified presilphiperfolan‐8β‐ol and presilphiperfol‐7‐ene as predominant products. Furthermore, biological activity assays revealed that the products from IlTPS1 exhibited a potent antifungal activity against Nigrospora oryzae. Our study represents a significant advancement as it not only functionally identifies the first step enzyme in presilphiperfolane biosynthesis but also establishes the heterologous bioproduction of these unique sesquiterpenes. Significance Statement: Our research has uncovered the molecular mechanism responsible for the synthesis of rare, bridged tricyclic sesquiterpenes by IlTPS1. Furthermore, we have established their bioproduction and assessed their antimicrobial properties. This study serves as a promising example of how unique sesquiterpene natural products can be harnessed and leveraged in the pharmaceutical and agrochemical sectors for various applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09607412
- Volume :
- 120
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Plant Journal
- Publication Type :
- Academic Journal
- Accession number :
- 180425053
- Full Text :
- https://doi.org/10.1111/tpj.17008