Back to Search Start Over

SILICO INVESTIGATION OF PHOTOVOLTAIC PERFORMANCE OF MgXS3 (X = Ti AND Zr) CHALCOGENIDE PEROVSKITES COMPOUNDS.

SILICO INVESTIGATION OF PHOTOVOLTAIC PERFORMANCE OF MgXS3 (X = Ti AND Zr) CHALCOGENIDE PEROVSKITES COMPOUNDS.

Authors :
OLOPADE, M. A.
OYEBOLA, O. O.
BALOGUN, R. O.
ADEWOYIN, A. D.
ADEGBOYEGA, A. B.
Source :
Archives of Metallurgy & Materials; 2024, Vol. 69 Issue 3, p943-954, 12p
Publication Year :
2024

Abstract

First-principles density functional formulation was used to explore the electronic and optical properties of magnesium chalcogenides sulfides, MgXS<subscript>3</subscript> (X = Ti and Zr), which compose of magnesium titanium sulfide, MgTiS<subscript>3</subscript>, and magnesium zirconium sulfide, MgZrS<subscript>3</subscript>. The lattice parameter calculations for MgZrS<subscript>3</subscript> yielded 9.19 Å, a bulk modulus of 170.6 GPa, and an equilibrium volume of 423.03 ų. In contrast, MgTiS<subscript>3</subscript> yielded 9.27 Å, a bulk modulus of 251.3 GPa, and an equilibrium volume of 117.06 3 ų. The computation gave a direct bandgap value for MgTiS<subscript>3</subscript> and MgZrS<subscript>3</subscript> of 1.1 eV and 1.3 eV, respectively. The dielectric constants of 38 and 32 were observed for the imaginary and real values for energy equivalents of 0.7 eV and 1.35 eV. The determined dielectric constants and energy values of the perovskite compounds were 70 and 1.35 eV respectively with their point of intersection also at this bandgap value. The efficiency of the compounds was calculated using the spectroscopic limited maximum efficiency (SLME) in order to ascertain their output as absorber materials. The findings show that MgZrS<subscript>3</subscript> had a higher efficiency value of 32.54% and MgTiS<subscript>3</subscript> with 29.45%. These compounds' computed properties point to the possibility of creating inexpensive, non-toxic absorber layer materials for use in solar cell development and other electronic applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17333490
Volume :
69
Issue :
3
Database :
Complementary Index
Journal :
Archives of Metallurgy & Materials
Publication Type :
Academic Journal
Accession number :
180358652
Full Text :
https://doi.org/10.24425/amm.2024.150914