Back to Search Start Over

Numerical simulation of a highly efficient perovskite solar cell based on FeSi2 photoactive layer.

Authors :
Njema, George G.
Kibet, Joshua K.
Rono, Nicholas
Meyer, Edson L.
Source :
Nano Select; Sep2024, Vol. 5 Issue 9, p1-22, 22p
Publication Year :
2024

Abstract

The primary aim of this work is to investigate the use iron di‐silicide (FeSi2) as a photoactive layer in order to achieve superior performance in the solar cell architecture—ITO/TiO2/FeSi2/CuSCN/Ni. The optimum thickness of the absorber layer was found to be 1000 nm, which gave optimal properties of the proposed cell—a short‐circuit current density (Jsc) of 51.41 mAm−2, an open‐circuit voltage (Voc) of 0.93 V, a fill factor (FF) of 77.99%, and power conversion efficiency (PCE) of 37.17%. The introduction of an ultrathin interfacial layer between the electron transport layer (ETL), the perovskite interface, and the hole transport layer (HTL) enhanced the electrical output of the proposed solar cell. The Jsc increased to 51.86 mAcm−2, Voc rose to 0.97 V, while FF and PCE increased to 82.86% and 41.84%, respectively. Accordingly, the proposed cell architecture is promising and can be introduced into the manufacturing workflow for commercial applications. Moreover, because of its exceptional photon absorption capabilities, FeSi2 is a potentially excellent photoactive material for solar cell fabrication. The detailed findings of this study have therefore indicated that high‐performance FeSi2‐based solar can be achieved in future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Volume :
5
Issue :
9
Database :
Complementary Index
Journal :
Nano Select
Publication Type :
Academic Journal
Accession number :
180294133
Full Text :
https://doi.org/10.1002/nano.202400020