Back to Search Start Over

Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation.

Authors :
Williams, Wesley Allen
Aravamudhan, Shyam
Source :
Polymers (20734360); Oct2024, Vol. 16 Issue 19, p2837, 33p
Publication Year :
2024

Abstract

Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created "primary" category or the degradation derivative "secondary" category where the particles exhibit different physiochemical characteristics that attenuate their toxicities. However, some particle types are more well documented in terms of their fate in the environment and potential toxicological effects (secondary) versus their industrial fabrication and chemical characterization (primary). Fourier Transform Infrared Spectroscopy (FTIR/µ-FTIR), Raman/µ-Raman, Proton Nuclear Magnetic Resonance (H-NMR), Curie Point-Gas Chromatography-Mass Spectrometry (CP-gc-MS), Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Nanoparticle Tracking Analysis (NTA), Field Flow Fractionation-Multiple Angle Light Scattering (FFF-MALS), Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Differential Mobility Particle [Sizing] (DMPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microspectroscopy (STXM) are reviewed as part of a suite of characterization methods for physiochemical ascertainment and distinguishment. In addition, Optical-Photothermal Infrared Microspectroscopy (O-PTIR), Z-Stack Confocal Microscopy, Mueller Matrix Polarimetry, and Digital Holography (DH) are touched upon as a suite of cutting-edge modes of characterization. Organizations, like the water treatment or waste management industry, and those in groups that bring awareness to this issue, which are in direct contact with the hydrosphere, can utilize these techniques in order to sense and remediate this plastic polymer pollution. The primary goal of this review paper is to highlight the extent of plastic pollution in the environment as well as introduce its effect on the biodiversity of the planet while underscoring current characterization techniques in this field of research. The secondary goal involves illustrating current and theoretical avenues in which future research needs to address and optimize MPL/NPL remediation, utilizing nanotechnology, before this sleeping giant of a problem awakens. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
19
Database :
Complementary Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
180276941
Full Text :
https://doi.org/10.3390/polym16192837