Back to Search Start Over

Design of Stabilizing Network for Capacitive Power Transfer Transmitter Operating at Maximum Power Transfer Limiting the Voltage Gain in Resonant Capacitors.

Authors :
Estevez-Encarnacion, Eduardo Salvador
Hernandez-Gonzalez, Leobardo
Ramirez-Hernandez, Jazmin
Juarez-Sandoval, Oswaldo Ulises
Guevara-Lopez, Pedro
Avalos Arzate, Guillermo
Source :
Electronics (2079-9292); Oct2024, Vol. 13 Issue 19, p3859, 23p
Publication Year :
2024

Abstract

Capacitive power transfer (CPT) is a technology that is emerging as an alternative to inductive power transfer (IPT) in applications requiring low to medium power. A great interest has been developed in the implementation of CPT systems in battery charging systems, where a condition to compete with IPT systems is the need to increase the power transfer in the CPT systems without significant losses. This paper puts forth a design methodology for a stabilizing network, which has been applied to a CPT system. This methodology has been developed through impedance analysis of the circuit, in order to achieve maximum power transfer, with total gains of voltage and current reaching a value close to unity. The methodology allows for the calculation of the value of the components of the stabilizing network, which has been designed with the objective of stabilizing the resonant frequency against changes in the capacitance of the transmission plates. To validate the design procedure, an experimental prototype was developed at 25 W and an operational frequency of 1.55 MHz. The results obtained validate the design methodology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
19
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
180276307
Full Text :
https://doi.org/10.3390/electronics13193859