Back to Search Start Over

Forecasting the Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery in Various Provinces of China via NPP-VIIRS Nighttime Light Data.

Authors :
Yang, Rongchao
Zhou, Qingbo
Xu, Lei
Zhang, Yi
Wei, Tongyang
Source :
Applied Sciences (2076-3417); Oct2024, Vol. 14 Issue 19, p8752, 15p
Publication Year :
2024

Abstract

This paper attempts to establish the accurate and timely forecasting model for the total output value of agriculture, forestry, animal husbandry, and fishery (TOVAFAF) in various provinces of China using NPP-VIIRS nighttime light (NTL) remote sensing data and machine learning algorithms. It can provide important data references for timely assessment of agricultural economic development level and policy adjustment. Firstly, multiple NTL indices for provincial-level administrative regions of China were constructed based on NTL images from 2013 to 2023 and various statistics. The results of correlation analysis and significance test show that the constructed total nighttime light index (TNLI), luminous pixel quantity index (LPQI), luminous pixel ratio index (LPRI), and nighttime light squared deviation sum index (NLSDSI) are highly correlated with the TOVAFAF. Subsequently, using the relevant data from 2013 to 2020 as the training set, the four NTL indices were separately taken as single independent variable to establish the linear model, exponential model, logarithmic model, power exponential model, and polynomial model. And all the four NTL indices were taken as the input features together to establish the multiple linear regression (MLR), extreme learning machine (ELM), and particle swarm optimization-ELM (PSO-ELM) models. The relevant data from 2021 to 2022 were taken as the validation set for the adjustment and optimization of the model weight parameters and the preliminary evaluation of the modeling effect. Finally, the established models were employed to forecast the TOVAFAF in 2023. The experimental results show that the ELM and PSO-ELM models can better explore and characterize the potential nonlinear relationship between NTL data and the TOVAFAF than all the models established based on single NTL index and the MLR model, and the PSO-ELM model achieves the best forecasting effect in 2023 with the MRE value for 32.20% and the R<superscript>2</superscript> values of the linear relationship between the actual values and the forecasting values for 0.6460. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
19
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
180273369
Full Text :
https://doi.org/10.3390/app14198752