Back to Search
Start Over
On the Cauchy problem for a two‐component higher order Camassa–Holm system.
- Source :
- Mathematische Nachrichten; Oct2024, Vol. 297 Issue 10, p3797-3834, 38p
- Publication Year :
- 2024
-
Abstract
- In this paper, we focus on the well‐posedness, blow‐up phenomena, and continuity of the data‐to‐solution map of the Cauchy problem for a two‐component higher order Camassa–Holm (CH) system. The local well‐posedness is established in Besov spaces Bp,11p×Bp,12+1p$B_{p,1}^{\frac{1}{p}} \times B_{p,1}^{2+\frac{1}{p}}$ with 1≤p<∞$1 \le p < \infty$, which improves the local well‐posedness result proved before in Tang and Liu [Z. Angew. Math. Phys. 66 (2015), 1559–1580], Ye and Yin [arXiv preprint arXiv:2109.00948 (2021)], Zhang and Li [Nonlinear Anal. Real World Appl. 35 (2017), 414–440], and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. Next, we consider the continuity of the solution‐to‐data map, that is, the ill‐posedness is derived in Besov space Bp,∞s−2×Bp,∞s$B_{p,\infty }^{s - 2} \times B_{p,\infty }^s$ with 1≤p≤∞$1 \le p \le \infty$ and s>max{2+1p,52}$s>\max \lbrace 2+\frac{1}{p},\frac{5}{2}\rbrace$. Then, the nonuniform continuous and Hölder continuous dependence on initial data for this system are also presented in Besov spaces Bp,rs−2×Bp,rs$B_{p,r}^{s - 2} \times B_{p,r}^s$ with 1≤p,r<∞$1 \le p,r < \infty$ and s>max{2+1p,52}$s > \max \lbrace {2+\frac{1}{p},\frac{5}{2}}\rbrace$. Finally, the precise blow‐up criteria for the strong solutions of the two‐component higher order CH system is determined in the lowest Sobolev space Hs−2×Hs$H^{s-2}\times H^s$ with s>52$s>\frac{5}{2}$, which improves the blow‐up criteria result established before in He and Yin [Discrete Contin. Dyn. Syst. 37 (2016), no. 3, 1509–1537] and Zhou [Math. Nachr. 291 (2018), no. 10, 1595–1619]. [ABSTRACT FROM AUTHOR]
- Subjects :
- HOLDER spaces
BESOV spaces
SOBOLEV spaces
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 0025584X
- Volume :
- 297
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Mathematische Nachrichten
- Publication Type :
- Academic Journal
- Accession number :
- 180217285
- Full Text :
- https://doi.org/10.1002/mana.202300382