Back to Search Start Over

Marine diatom algae cultivation in simulated dairy wastewater and biomass valorization.

Authors :
Singh, Pankaj Kumar
Marella, Thomas Kiran
Bhattacharjya, Raya
Tyagi, Rashi
Plaha, Navdeep Singh
Kaushik, Nutan
Tiwari, Archana
Source :
Environmental Science & Pollution Research; Oct2024, Vol. 31 Issue 46, p57466-57477, 12p
Publication Year :
2024

Abstract

Liquid byproducts and organic wastes generated from dairy processing units contribute as the largest source of industrial food wastewater. Though bacteria-mediated treatment strategies are largely implemented, a more effective and innovative management system is needed of the hour. Thus, the current study involves the cultivation of centric diatoms, Chaetoceros gracilis, and Thalassiosira weissflogii in simulated dairy wastewater (SDWW) formulated using varying amounts of milk powder with artificial seawater f/2 media (ASW). The results revealed that cell density and biomass productivity were highest in the 2.5% SDWW treatment cultures of both the strains, the maximum being in C. gracilis (7.5 × 10<superscript>6</superscript> cells mL − <superscript>1</superscript>; 21.1 mg L<superscript>−1</superscript> day<superscript>−1</superscript>). Conversely, the total carotenoid, chrysolaminarin, and phenol content were negatively impacted by SDWW. However, a considerable enhancement in the total lipid content was reported in the 2.5% SDWW culture of both species. Furthermore, the fatty acid profiling revealed that though the total polyunsaturated fatty acid (PUFA) content was highest in the control setups, the total mono polyunsaturated fatty acid (MUFA) content was higher in the 5% SDWW setups (30.66% in C. gracilis and 33.21% in T. weissflogii). In addition to it, in the cultures utilizing energy from external carbon sources provided by SDWW, the biodiesel produced was also enhanced owing to the heightened cetane number. Thus, the current study evidently highlights the organic carbon acquisition potential of marine diatoms with the scope of providing sustainable biorefinery. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
31
Issue :
46
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
180168306
Full Text :
https://doi.org/10.1007/s11356-023-31531-3