Back to Search
Start Over
Waste-Derived Chars: A Comprehensive Review.
- Source :
- Waste (2813-0391); Sep2024, Vol. 2 Issue 3, p218-239, 22p
- Publication Year :
- 2024
-
Abstract
- The production of heterogeneous solid waste, such as municipal solid waste (MSW), construction and demolition waste (CDW), and industrial solid waste (ISW), has increased dramatically in recent decades, and its management is one of today's biggest concerns. Using waste as a resource to produce value-added materials such as char is one of the most promising strategies for successful and sustainable waste management. Virtually any type of waste, through various thermochemical technologies, including torrefaction, pyrolysis, hydrothermal carbonization, and gasification, can produce char with potential material and energy applications. Pyrolysis is the most widespread technology, and there are more studies on producing and applying waste-derived char using this technology. The properties of waste-derived char seem to be influenced by the conversion technology and conditions, as well as by the composition of the source waste. A literature search indicated that the properties of waste-derived char are highly variable with the composition of the raw material, with carbon content in the range 8–77%, a higher heating value of 2.5–28.4 MJ/kg and a specific surface area of 0.7–12 m<superscript>2</superscript>/g. Depending on the properties of char derived from waste, there are greater or minor difficulties in applying it, with ash content, heavy metals, and polycyclic aromatic hydrocarbon (PAH) concentrations being some of its limiting properties. Therefore, this review attempts to compile relevant knowledge on the production of waste-derived char, focusing on heterogeneous solid waste, applied technologies, and practical application routes in the real world to create a supply chain, marketing, and use of waste-derived char. Some challenges and prospects for waste-derived char are also highlighted in this study. [ABSTRACT FROM AUTHOR]
- Subjects :
- SOLID waste
DEMOLITION
WASTE management
PYROLYSIS
CARBONIZATION
Subjects
Details
- Language :
- English
- ISSN :
- 28130391
- Volume :
- 2
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Waste (2813-0391)
- Publication Type :
- Academic Journal
- Accession number :
- 180070160
- Full Text :
- https://doi.org/10.3390/waste2030013