Back to Search Start Over

ON A CONJECTURE OF LENNY JONES ABOUT CERTAIN MONOGENIC POLYNOMIALS.

Authors :
KAUR, SUMANDEEP
KUMAR, SURENDER
Source :
Bulletin of the Australian Mathematical Society; Aug2024, Vol. 110 Issue 1, p72-76, 5p
Publication Year :
2024

Abstract

Let K = ℚ(ϑ) be an algebraic number field with ϑ satisfying a monic irreducible polynomial f (x) of degree n over ℚ. The polynomial f (x) is said to be monogenic if {1,ϑ,..., ϑ<superscript>n-1</superscript>} is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones ['A brief note on some infinite families of monogenic polynomials', Bull. Aust. Math. Soc. 100 (2019), 239-244] conjectured that if n ≥ 3, 1 ≤ m ≤ n - 1, gcd(n, mB) = 1 and A is a prime number, then the polynomial x<superscript>n</superscript> + A(Bx + 1)<superscript>m</superscript> ∈ ℤ[x] is monogenic if and only if n<superscript>n</superscript> + (-1)<superscript>n+m</superscript>B<superscript>n</superscript>(n - m)<superscript>n-m</superscript>m<superscript>m</superscript> A is square-free. We prove that this conjecture is true. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00049727
Volume :
110
Issue :
1
Database :
Complementary Index
Journal :
Bulletin of the Australian Mathematical Society
Publication Type :
Academic Journal
Accession number :
180060456
Full Text :
https://doi.org/10.1017/S0004972723001119