Back to Search
Start Over
ON A CONJECTURE OF LENNY JONES ABOUT CERTAIN MONOGENIC POLYNOMIALS.
- Source :
- Bulletin of the Australian Mathematical Society; Aug2024, Vol. 110 Issue 1, p72-76, 5p
- Publication Year :
- 2024
-
Abstract
- Let K = ℚ(ϑ) be an algebraic number field with ϑ satisfying a monic irreducible polynomial f (x) of degree n over ℚ. The polynomial f (x) is said to be monogenic if {1,ϑ,..., ϑ<superscript>n-1</superscript>} is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones ['A brief note on some infinite families of monogenic polynomials', Bull. Aust. Math. Soc. 100 (2019), 239-244] conjectured that if n ≥ 3, 1 ≤ m ≤ n - 1, gcd(n, mB) = 1 and A is a prime number, then the polynomial x<superscript>n</superscript> + A(Bx + 1)<superscript>m</superscript> ∈ ℤ[x] is monogenic if and only if n<superscript>n</superscript> + (-1)<superscript>n+m</superscript>B<superscript>n</superscript>(n - m)<superscript>n-m</superscript>m<superscript>m</superscript> A is square-free. We prove that this conjecture is true. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00049727
- Volume :
- 110
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Bulletin of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 180060456
- Full Text :
- https://doi.org/10.1017/S0004972723001119