Back to Search Start Over

Visual Detection of Traffic Incident through Automatic Monitoring of Vehicle Activities.

Authors :
Karim, Abdul
Raza, Muhammad Amir
Alharthi, Yahya Z.
Abbas, Ghulam
Othmen, Salwa
Hossain, Md. Shouquat
Nahar, Afroza
Mercorelli, Paolo
Source :
World Electric Vehicle Journal; Sep2024, Vol. 15 Issue 9, p382, 19p
Publication Year :
2024

Abstract

Intelligent transportation systems (ITSs) derive significant advantages from advanced models like YOLOv8, which excel in predicting traffic incidents in dynamic urban environments. Roboflow plays a crucial role in organizing and preparing image data essential for computer vision models. Initially, a dataset of 1000 images is utilized for training, with an additional 500 images reserved for validation purposes. Subsequently, the Deep Simple Online and Real-time Tracking (Deep-SORT) algorithm enhances scene analyses over time, offering continuous monitoring of vehicle behavior. Following this, the YOLOv8 model is deployed to detect specific traffic incidents effectively. By combining YOLOv8 with Deep SORT, urban traffic patterns are accurately detected and analyzed with high precision. The findings demonstrate that YOLOv8 achieves an accuracy of 98.4%, significantly surpassing alternative methodologies. Moreover, the proposed approach exhibits outstanding performance in the recall (97.2%), precision (98.5%), and F1 score (95.7%), underscoring its superior capability in accurate prediction and analyses of traffic incidents with high precision and efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20326653
Volume :
15
Issue :
9
Database :
Complementary Index
Journal :
World Electric Vehicle Journal
Publication Type :
Academic Journal
Accession number :
180020779
Full Text :
https://doi.org/10.3390/wevj15090382