Back to Search Start Over

Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management.

Authors :
Pasupuleti, Vikram
Thuraka, Bharadwaj
Kodete, Chandra Shikhi
Malisetty, Saiteja
Source :
Logistics (2305-6290); Sep2024, Vol. 8 Issue 3, p73, 16p
Publication Year :
2024

Abstract

Background: In the current global market, supply chains are increasingly complex, necessitating agile and sustainable management strategies. Traditional analytical methods often fall short in addressing these challenges, creating a need for more advanced approaches. Methods: This study leverages advanced machine learning (ML) techniques to enhance logistics and inventory man-agement. Using historical data from a multinational retail corporation, including sales, inventory levels, order fulfillment rates, and operational costs, we applied a variety of ML algorithms, in-cluding regression, classification, clustering, and time series analysis. Results: The application of these ML models resulted in significant improvements across key operational areas. We achieved a 15% increase in demand forecasting accuracy, a 10% reduction in overstock and stockouts, and a 95% accuracy in predicting order fulfillment timelines. Additionally, the approach identified at-risk shipments and enabled customer segmentation based on delivery preferences, leading to more personalized service offerings. Conclusions: Our evaluation demonstrates the transforma-tive potential of ML in making supply chain operations more responsive and data-driven. The study underscores the importance of adopting advanced technologies to enhance deci-sion-making, evidenced by a 12% improvement in lead time efficiency, a silhouette coefficient of 0.75 for clustering, and an 8% reduction in replenishment errors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23056290
Volume :
8
Issue :
3
Database :
Complementary Index
Journal :
Logistics (2305-6290)
Publication Type :
Academic Journal
Accession number :
180019530
Full Text :
https://doi.org/10.3390/logistics8030073