Back to Search Start Over

Evaluating a Fe-Based Metallic Glass Powder as a Novel Negative Electrode Material for Applications in Ni-MH Batteries.

Authors :
Sotelo, Oscar
Henao, John
Poblano, Carlos
Campillo, Bernardo
Castañeda, Erick
Flores, Néstor
Molina, Arturo
Martínez, Horacio
Source :
Batteries; Sep2024, Vol. 10 Issue 9, p312, 18p
Publication Year :
2024

Abstract

Metallic glasses (MGs) are a type of multicomponent non-crystalline metallic alloys obtained by rapid cooling, which possess several physical, mechanical, and chemical advantages against their crystalline counterparts. In this work, an Fe-based MG is explored as a hydrogen storage material, especially, due to the evidence in previous studies about the capability of some amorphous metals to store hydrogen. The evaluation of an Fe-based MG as a novel negative electrode material for nickel/metal hydride (Ni-MH) batteries was carried out through cyclic voltammetry and galvanostatic charge–discharge tests. A conventional LaNi<subscript>5</subscript> electrode was also evaluated for comparative purposes. The electrochemical results obtained by cyclic voltammetry showed the formation of three peaks, which are associated with the formation of Fe oxides/oxyhydroxides and hydroxides. Cycling charge/discharge tests revealed activation of the MG electrode. The highest discharge capacity value was 173.88 mAh/g, but a decay in its capacity was observed after 25 cycles, contrary to the LaNi<subscript>5</subscript>, which presents an increment of the discharge capacity for all the current density values evaluated, reached its value maximum at 183 mAh/g. Characterization analyses performed by X-ray diffraction, Scanning Electron Microscopy and Raman Spectroscopy revealed the presence of corrosion products and porosity on the surface of the Fe-based MG electrodes. Overall, the Fe-based MG composition is potentially able to work as a negative electrode material, but degradation and little information about storage mechanisms means that it requires further investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23130105
Volume :
10
Issue :
9
Database :
Complementary Index
Journal :
Batteries
Publication Type :
Academic Journal
Accession number :
180017048
Full Text :
https://doi.org/10.3390/batteries10090312