Back to Search Start Over

Research Progress of Marine Anti-Fouling Coatings.

Authors :
Wu, Shaoqian
Wu, Shuo
Xing, Shilong
Wang, Tianshu
Hou, Jiabin
Zhao, Yuantao
Li, Wenge
Source :
Coatings (2079-6412); Sep2024, Vol. 14 Issue 9, p1227, 25p
Publication Year :
2024

Abstract

The extended immersion of ships in seawater frequently results in biofouling, a condition characterized by the accumulation of marine organisms such as barnacles and algae. To combat this issue, the application of anti-fouling coatings to the hull surfaces of vessels has emerged as one of the most effective strategies. In response to the increasing global emphasis on environmental sustainability, there is a growing demand for anti-fouling coatings that not only demonstrate superior anti-fouling efficacy but also adhere to stringent environmental standards. The traditional use of organotin-based self-polishing anti-fouling coatings, known for their high toxicity, has been prohibited due to environmental concerns. Consequently, there is a progressive shift toward the development and application of environmentally friendly anti-fouling coatings. This paper reviews the toxicity and application limitations associated with conventional anti-fouling coatings. It provides a comprehensive overview of recent advancements in the field, including the development of novel self-polishing anti-fouling coatings, low surface energy coatings, biomimetic coatings, and nanostructured coatings, each leveraging distinct anti-fouling mechanisms. The paper evaluates the composition and performance of these emerging coatings and identifies key technical challenges that remain unresolved. It also proposes a multi-faceted approach to addressing these challenges, suggesting potential solutions for enhancing the effectiveness and environmental compatibility of anti-fouling technologies. The paper forecasts future research directions and development trajectories for marine anti-fouling coatings, emphasizing the need for continued innovation to achieve both environmental sustainability and superior anti-fouling performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20796412
Volume :
14
Issue :
9
Database :
Complementary Index
Journal :
Coatings (2079-6412)
Publication Type :
Academic Journal
Accession number :
180015488
Full Text :
https://doi.org/10.3390/coatings14091227