Back to Search Start Over

Probing Internal Damage in Grey Cast Iron Compression Based on Acoustic Emission and Particle Flow.

Authors :
Li, Zhen
Lei, Zhao
Xu, Sheng
Sun, Hengyang
Li, Bin
Qiao, Zhizhong
Source :
Processes; Sep2024, Vol. 12 Issue 9, p1893, 17p
Publication Year :
2024

Abstract

Grey cast iron releases energy in the form of stress waves when damaged. To analyse the evolution of the physical and mechanical properties and acoustic emission characteristics of grey cast iron under uniaxial compression, acoustic emission signals were collected at different rates (0.5, 1, and 2 mm/s). Combined with load-time curves, damage modes were identified and classified using the parametric RA-AF correlation analysis method. The results indicate the loading rate effects on the strength, deformation, acoustic emission (AE), and energy evolution of grey cast iron specimens. The acoustic emission counts align with the engineering stress–strain response. To better illustrate the entire failure process of grey cast iron, from its internal microstructure to its macroscopic appearance, X-ray diffraction (XRD) and optical microscopy (OM) were employed for qualitative and quantitative analyses of the material's internal microstructural characteristics. The equivalent crystal model of grey cast iron was constructed using a Particle Flow Software PFC2D 6.00.30 grain-based model (GBM) to simulate uniaxial compression acoustic emission tests. The calibration of fine parameters with indoor test results ensured good agreement with numerical simulation results. Acoustic emission dynamically monitors the compression process, while discrete element particle flow software further analyses the entire damage process from the inside to the outside. It provides a new research method and idea for the study of crack extension in some metal materials such as grey cast iron. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
180014271
Full Text :
https://doi.org/10.3390/pr12091893