Back to Search Start Over

Typhoon Intensity Change in the Vicinity of the Semi-Enclosed Sea of Japan.

Authors :
Choi, Soo-Min
Choi, Hyo
Source :
Journal of Marine Science & Engineering; Sep2024, Vol. 12 Issue 9, p1638, 18p
Publication Year :
2024

Abstract

The intensity change of Typhoon Songda (TY-0418) in the vicinity of the semi-enclosed Sea of Japan (SJ) was numerically investigated using 3D-WRF and UM-KMA models and GOES-IR satellite images on 4 to 8 September 2004. After the typhoon originated in the Western Pacific Ocean in August, it moved to the East China Sea. Following the north-eastward Kuroshio Warm Current, it developed with horizontal and vertical asymmetrical wind and moisture patterns until 5 September. On 7 September, closing to the Kyushu Island, it was divided into three wind fields near the surface due to the increased friction from the surrounding lands and shallower sea depth close to the land, but it still maintained its circular shape over 1 km in height. As it passed by the Korea Strait and entered the SJ, it became a smaller, deformed typhoon due to the SJ's surrounding mountains, located between the East Korea and Tsushima Warm Currents inside the SJ. Its center matched a high equivalent potential temperature area, releasing significant latent heat through the condensation of water particles over warm currents. The latent heat converted to kinetic energy could be supplied into the typhoon circulation, causing its development. Moist flux and streamline at 1.5 km in height clearly showed the moisture transportation via the mutual interaction of the cyclonic circulation of the typhoon and the anti-cyclonic circulation of the North Pacific High Pressure from the typhoon's tail toward both the center of the SJ and the Russian Sakhalin Island in the north of Japan, directly causing large clouds in its right quadrant. Simultaneously, the central pressure decrease with time could converge both transported moist air by the typhoon itself and water particles evaporated from the sea, causing them to rise and resulting in the formation of large clouds and the rapid development of the typhoon circulation. The strong downslope winds from the surrounding mountains of the SJ to its center also produced a cyclonic vortex due to the Coriolis force to the right, enhancing the typhoon's circulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20771312
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Journal of Marine Science & Engineering
Publication Type :
Academic Journal
Accession number :
180013960
Full Text :
https://doi.org/10.3390/jmse12091638