Back to Search Start Over

SARS-CoV-2 Genotyping Highlights the Challenges in Spike Protein Drift Independent of Other Essential Proteins.

Authors :
Prokop, Jeremy W.
Alberta, Sheryl
Witteveen-Lane, Martin
Pell, Samantha
Farag, Hosam A.
Bhargava, Disha
Vaughan, Robert M.
Frisch, Austin
Bauss, Jacob
Bhatti, Humza
Arora, Sanjana
Subrahmanya, Charitha
Pearson, David
Goodyke, Austin
Westgate, Mason
Cook, Taylor W.
Mitchell, Jackson T.
Zieba, Jacob
Sims, Matthew D.
Underwood, Adam
Source :
Microorganisms; Sep2024, Vol. 12 Issue 9, p1863, 14p
Publication Year :
2024

Abstract

As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762607
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
180013404
Full Text :
https://doi.org/10.3390/microorganisms12091863