Back to Search Start Over

Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation.

Authors :
Qi, Zhongying
Liu, Cunliang
Wang, Yao
Zhang, Zhiwei
Sun, Xiaobo
Source :
Agriculture; Basel; Sep2024, Vol. 14 Issue 9, p1645, 22p
Publication Year :
2024

Abstract

In response to the challenges of low fertilizer utilization rates, excessive application amounts, and difficulties in precise targeted fertilization during the middle tillage and top-dressing period for corn, a targeted deep fertilization device is designed, integrating mechanical structure design and automatic control technology. The device mainly includes a strong discharge fertilization device and a targeted fertilization control system. The fertilization device has been designed, and the main factors affecting the performance of the fertilization wheel have been identified. Based on the structure, a strong discharge fertilization plate mechanism has been added, and a mechanical model for the fertilization wheel during the refilling and discharging processes has been constructed. A targeted fertilization control system for corn has been developed that utilizes a photoelectric sensor to detect the position of the corn plants. A microcontroller combines the plant position information and the device moving speed to adjust the intermittent rotation of the stepper motor in real time, achieving targeted deep fertilization for corn. Coupled simulation analysis was conducted using discrete element software EDEM and dynamic software Adams. Through single-factor and multi-factor experiments, the main factors affecting fertilization performance were analyzed, and the optimal structural parameters for the fertilization wheel were determined. Bench validation tests were conducted, and the results demonstrated that under forward speeds of 0.4 to 1.2 m/s, the coefficient of variation of the fertilizer application rate per hole of the discharge device ranged from 2.02% to 4.46%, the error in fertilizer application rate per hole ranged from 7.12% to 12.18%, the average length of fertilizer application holes ranged from 72.5 mm to 130.2 mm, and the coefficient of variation of hole length stability ranged from 1.94% to 3.54%. These parameters were consistent with the results from the simulation tests, and the operational performance met the requirements. Finally, field tests validated the overall operational performance of the device. When the device's speed ranged from 0.4 m/s to 1.2 m/s, the coefficient of variation of the fertilizer application rate per hole, the error in fertilizer application rate per hole, the average length of fertilizer application holes, the coefficient of variation of hole length stability, and the qualification rate of fertilization position were 3.63%, 10.46%, 108.8 mm, 2.96%, and 87.16%, respectively. The overall performance of the device is stable and meets the requirements for targeted deep fertilization in corn cultivation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20770472
Volume :
14
Issue :
9
Database :
Complementary Index
Journal :
Agriculture; Basel
Publication Type :
Academic Journal
Accession number :
180012891
Full Text :
https://doi.org/10.3390/agriculture14091645