Back to Search Start Over

FindCSV: a long-read based method for detecting complex structural variations.

Authors :
Zheng, Yan
Shang, Xuequn
Source :
BMC Bioinformatics; 9/28/2024, Vol. 25 Issue 1, p1-19, 19p
Publication Year :
2024

Abstract

Background: Structural variations play a significant role in genetic diseases and evolutionary mechanisms. Extensive research has been conducted over the past decade to detect simple structural variations, leading to the development of well-established detection methods. However, recent studies have highlighted the potentially greater impact of complex structural variations on individuals compared to simple structural variations. Despite this, the field still lacks precise detection methods specifically designed for complex structural variations. Therefore, the development of a highly efficient and accurate detection method is of utmost importance. Result: In response to this need, we propose a novel method called FindCSV, which leverages deep learning techniques and consensus sequences to enhance the detection of SVs using long-read sequencing data. Compared to current methods, FindCSV performs better in detecting complex and simple structural variations. Conclusions: FindCSV is a new method to detect complex and simple structural variations with reasonable accuracy in real and simulated data. The source code for the program is available at https://github.com/nwpuzhengyan/FindCSV. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712105
Volume :
25
Issue :
1
Database :
Complementary Index
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
179968238
Full Text :
https://doi.org/10.1186/s12859-024-05937-w